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Abstract

We study a large Nc limit of a two-dimensional Yang-Mills theory coupled to
bosons and fermions in the fundamental representation. Extending an approach
due to Rajeev we show that the limiting theory can be described as a classical
Hamiltonian system whose phase space is an infinite-dimensional supergrassman-
nian. The linear approximation to the equations of motion and the constraint
yields the ’t Hooft equations for the mesonic spectrum. Two other approximation
schemes to the exact equations are discussed.

1 Introduction

To gain a better understanding of gauge theories, two dimensional models are often used
as a testing ground. In a by now classic paper, ‘t Hooft has shown that the large-Nc limit
allows us to obtain an equation describing the meson spectrum of two dimensional QCD [1].
The same model was analyzed using different approaches [2, 3, 4, 5] and they confirmed the
results obtained by ‘t Hooft.

In this article we study the large-Nc limit of certain two dimensional theories following a
general approach developed by S. Rajeev [6, 7] (see also [8] and [9] for similar approaches).
In the large Nc limit of various quantum field theories (e.g., Quantum Chromodynamics
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or QCD) the quantum fluctuations become small and the theories are well described by a
classical limit. This classical limit however is different from the conventional one in that
many of the essential non-perturbative features of the quantum theory survive the large Nc

limit[10, 1, 11]. In the formulation of [7] the classical theory corresponding to large Nc limit
of 2D QCD is described by a Hamiltonian system defined on an an infinite dimensional Grass-
mannian. The points of this infinite dimensional manifold can be identified with subspaces
in infinite-dimensional Hilbert space (see the main text for precise definitions). The Grass-
mannian is a topologically nontrivial manifold whose connected components are labeled by
an integer which can be identified with the baryon number. The ‘t Hooft equation describing
the meson mass spectrum can be obtained in the linear approximation to the equations of
motion on the Grassmannian [7]. In addition to meson masses, this approach also allows
to estimate the baryon mass via a variational ansatz[12, 6]. The overall scheme resembles
the Skyrme model of baryons in four-dimensional QCD. However unlike the Skyrme model
the Grassmannian system of [7] can be derived as a large Nc limit of an underlying gauge
theory. The Grassmannian is a homogeneous manifold. It is equipped with an action of an
infinite-dimensional group (which is unitary for the fermionic matter and pseudounitary in
the case of bosonic matter). This fact is very important for the structure of the phase space.
In particular, it can be used for quantization of the classical system which would allow one to
get a handle on 1/Nc corrections (including nonperturbative ones). We believe that besides
the possibility of describing baryons, not captured by the original ‘t Hooft approach [10],
the present approach can be made mathematically more precise. We remark that when the
matter fields are in the adjoint representation, the mathematical techniques required are also
very elegant and interesting involving the Cuntz algebra in various forms. For this approach,
we refer the reader to the papers of Halpern and Schwartz [13] and Rajeev and Lee [14].

The 2D QCD interacting with bosons in the fundamental representation was also worked
out following ‘t Hooft, partly because bosonic theory resembles the four dimensional QCD in
certain respects more than the fermionic one[15, 16, 17]. The approach of [7] was extended
to the bosonic case in [18] (see also [19] for a similar approach to the problem).

In this paper we study the case when both bosonic and fermionic matter are present. One
motivation for this is the fact that a dimensional reduction of four-dimensional QCD produces
two dimensional fundamental fermions and bosons in the adjoint representation coupled
to the fermions via gauge fields. We do not expect that the bosons in the fundamental
representation capture completely the adjoint case, but it can be used again as a testing
ground. We also explore a more general case that includes the Yukawa type interaction
between bosons and fermions.

The model of fundamental bosons and fermions interacting via SU(Nc) gauge field was
studied, following the same ideas in the original paper of ‘t Hooft, by Aoki[20, 21]. The more
general models in the large-Nc limit are presented in a paper by Cavicchi, where he uses a
bilocal field approach in the path integral picture [22]. Some of the models discussed in [22]
are more general containing more complicated interactions, some of which in fact require a
coupling constant renormalization.

In [20, 21, 22]it is shown that there are ‘t Hooft like spectral equations for various types of
mesons. In our case we have boson-boson, fermion-fermion, and boson-fermion type mesons,
and they all satisfy essentially the same equation. In each case the meson spectrum is discrete
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and these mesons are all stable in the large-Nc approximation. One cannot say much about
the baryons using these methods.

In the present work we generalize the approach of [7] to QCD for the bosonic and fermionic
matter fields coupled via gauge fields. We will see that the phase space of the theory cor-
responds to a certain superversion of the infinite-dimensional Grassmanian. Although the
original system does not have any supersymmetry the main objects describing the large Nc

limit, such as the phase space, group action, symplectic form, can be described in superge-
ometric terms. (A similar phenomenon was observed in another two-dimensional model in
[23], and indeed this is a general feature of bosons and fermions coupled via gauge fields).
We obtain the equations describing the meson spectrum of the model within the linear ap-
proximation. These equations agree with the ones found by Aoki [20, 21]. The theory we will
present is actually nonlinear and can accommodate solitonic solutions which should describe
baryons. We identify the operator which gives us the baryon number. We also propose some
approximations to the spectral equations going beyond the linear approximation and discuss
some consequences.

The layout of the paper is as follows. In Section 2 we reformulate the model in terms of
color invariant bilinears. We further derive the Poisson brackets and the constraints imposed
on the bilinear variables in large Nc limit. In Section 3 we describe this Hamiltonian system
in more precise terms using the language of supergeometry. The linear approximation to the
equations of motion giving the meson mass spectrum is discussed in section 4. In Section
5 we propose two approximation schemes that incorporate some nonlinear corrections and
give a qualitative discussion of their influence on the spectrum.

2 The algebra of color invariant operators

We start by writing the action functionals of the two theories that we are interested in. Both
theories have a gauge field that can be completely eliminated in favor of static 2D Coulomb
potential. We will use the light cone coordinates x+ = 1√

2
(t + x), x− = 1√

2
(t − x) and

choose the A+ = 0 gauge. We first look at the gauge-coupled complex bosons with a quartic
self-interaction term and Dirac fermions both in the fundamental representation of SU(Nc):

S =
∫

dx+dx−[−1

2
TrF+−F

+− + i
√

2ψ∗α
L (∂− + igA−)β

αψLβ + i
√

2ψ∗α
R ∂+ψRα

−mF (ψ∗α
L ψRα + ψ∗α

R ψLα) − 2φ∗α∂−∂+φα + ig(∂+φ
∗αA−

β
αφβ − φ∗αA−

β
α∂+φβ)

−m2
Bφ

∗αφα − λ2

4
φ∗αφαφ

∗βφβ] (1)

In the other model we will look at parity broken and a Yukawa type interaction is added
between fermions and bosons

SY =
∫

dx+dx−[−1

2
TrF+−F

+− + i
√

2ψ∗α
L (∂− + igA−)β

αψLβ + i
√

2ψ∗
R∂+ψR

−2φ∗α∂−∂+φα + ig(∂+φ
∗αA−

β
αφβ − φ∗αA−

β
α∂+φβ) −m2

Bφ
∗αφα
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−λ
2

4
φ∗αφαφ

∗βφβ + µ(ψ∗
RψLαφ

∗α + ψ∗α
L ψRφα)] . (2)

In both cases we normalize the Lie algebra generators T a as TrT aT b = δab, and we choose
them to be Hermitian. This second model is anomalous because it is not a chiral gauge
theory. There exist some ideas in the literature to treat an anomalous two dimensional
model [24], but we will not follow this path. Instead we will take the above model at the
classical level and eliminate the gauge fields which are not dynamical, and subsequently
quantize the effective theory. One can check that the resulting system has a global SU(Nc)
symmetry and relativistic invariance. We regard this as a toy model which is inspired from

gauge theory.
We can further use the Gauss constraint to eliminate the gauge field A− and the fermionic

equations of motion to eliminate the right moving fermion ψR (ψRα). We will do these
reductions in the quantized model for the first case, and classically for the second one. The
resulting action is first order in the “time direction” x− so we can pass to Hamiltonian
formalism in a straightforward way.

The Fourier mode expansions read,

φα(x+) =
∫

aα(p)e−ipx+ dp

2π(2|p|)1/2
, ψLα(x+) =

∫

χα(p)e−ipx+ dp

2π21/4
,

(to simpify the notation instead of p+ we write p). The normalization factors are chosen to
give the correct classical limits. The commutation/anticommutation relations for the fields
in the light cone gauge take the form [6],

[χα(p), χ†β(q)]+ = δβ
α2πδ(p− q) , [aα(p), a†β(q)] = sgn(p)δβ

α2πδ(p− q) . (3)

We define δ[p− q] = 2πδ(p− q), and use [dp] = dp
2π

to keep track of factors of 2π.
One defines a Fock vacuum state |0〉 by the conditions,

aα(p)|0〉 = χα(p)|0〉 = 0 for p > 0 a†α(p)|0〉 = χ†α(p)|0〉 = 0 for p < 0. (4)

The corresponding normal orderings are defined as

: χ†α(p)χβ(q) :=

{

−χβ(q)χ†α(p) if p < 0, q < 0,
χ†α(p)χβ(q) otherwise ,

(5)

: a†α(p)aβ(q) :=

{

aβ(q)a†α(p) if p < 0, q < 0,
a†α(p)aβ(q) otherwise .

(6)

(Later on we also use the extension of normal ordering to product of four operators, and it is
the standard one). For our purposes it is most convenient to remember the normal orderings
of bilinears in the following form:

: χα†(p)χβ(q) : = χα†(p)χβ(q) − δα
β

2
[1 − sgn(p)]δ[p− q]

: aα†(p)aβ(q) : = aα†(p)aβ(q) − δα
β

2
[1 − sgn(p)]δ[p− q].
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Written as quantum operators, we have in the first model,

ψRα =
mF√
2i∂+

ψLα (7)

and its hermitian conjugate, and

ψR = − µ√
2i∂+

φ∗αψLα (8)

and its hermitian conjugate for the second model. In the first case, A− is given in terms of
the other fields as,

Aa
− = − g

∂2
+

: (
√

2ψ†α
L (T a)β

αψLβ + i[φ†α(T a)β
α∂+φβ − ∂+φ

†α(T a)β
αφβ]) : (9)

In the second model we are using the same equation to eliminate A− at the classical level
(which means without the normal ordering).

By eliminating the redundant degrees of freedom we can express the action in terms of
the bilinears of the fields ψLα and φα only. We introduce,

M̂(p, q) =
2

Nc
: χ†α(p)χα(q) :

N̂(p, q) =
2

Nc

: a†α(p)aα(q) : (10)

and their odd counterparts,

Q̂(p, q) =
2

Nc
χ†α(p)aα(q) , ˆ̄Q(r, s) =

2

Nc
a†α(r)χα(s) (11)

Once the redundancies are removed the resulting action is already first order in the “time”
variable hence we can read off the Hamiltonian, and the resulting commutation relations
are consistent with the ones obtained from the conventional canonical quantization. The
reduction is straightforward in principle but requires a long and careful computation. Since
the details are explained in Rajeev’s lecture notes [6] we only give the result:

H = H0 +HI , (12)

H0 =
1

4
M2

B

∫

[dp]

|p| N(p, p) +
1

4
M2

F

∫

[dp]

p
M(p, p), (13)

where for the first model we use,

M2
F = m2

F − g2

π
, M2

B = m2
RB − g2

π
. (14)

We employ a logarithmic renormalization on the bare mass of the bosonic field [19], and
denote the renormalized mass as mRB. For the second model, since we reduce it at the
classical level there are no corrections coming to the boson mass term,

M2
F = 0, M2

B =
m2

B

4
. (15)

5



The interaction parts are given by

HI =
∫

[dpdqdsdt] G1(p, q; s, t)M(p, q)M(s, t) +
∫

[dpdqdsdt] G2(p, q; s, t)N(p, q)N(s, t)

+
∫

[dpdqdsdt] G3(p, q; s, t)Q(p, q)Q̄(s, t),

where both for the first and second models,

G1(p, q; s, t) = −g
2

16

( 1

(p− t)2
+

1

(q − s)2

)

δ[p + s− t− q] (16)

G2(p, q; s, t) =
g2

64

( 1

(p− t)2
+

1

(q − s)2

)

δ[p+ s− t− q]
qt+ ps+ st+ pq

√

|pqst|
+
λ2

64

δ[p+ s− t− q]
√

|pqst|
.

(17)
In the first model we use,

G3(p, q; s, t) =
g2

8

q + s

(q − s)2

δ[p+ s− t− q]
√

|qs|
, (18)

and for the second model we only have an additional term,

G3(p, q; s, t) =
µ2

16

1

(p− q)

1
√

|qs|
δ[p− t− q + s] +

g2

8

q + s

(q − s)2

δ[p+ s− t− q]
√

|qs|
. (19)

Above we rescaled our coupling constants by a factor of Nc and keep the same symbols for the
couplings(so g2Nc 7→ g2, µ2Nc 7→ µ2 and λ2Nc 7→ λ2) to simplify notation. For the precise
meaning of these singular integral kernels we refer to the lecture notes of Rajeev[6]: we
should interpret them as Hadamard principal value. We will continue to write the ordinary
integrals but keep in mind that the integrals are evaluated with this prescription.

The theory we obtained still possesses a global SU(Nc) invariance. The corresponding
generator of symmetry is

Q̂α
β =

∫

[dp]
(

: χ†α(p)χβ(p) : − 1

Nc
δα
β : χ†γ(p)χγ(p) :

)

+

+
∫

[dp]sgn(p)
(

: a†α(p)aβ(p) : − 1

Nc
δα
β : a†γ(p)aγ(p) :

)

. (20)

It is known (at least for the purely spinor and purely scalar QCD2) that in the light-like axial
gauge only the color singlet sector of the model can be quantized in a way that preserves
Lorentz invariance ([5, 4]). In this paper we will therefore consider only the restrictions of
our models to this sector. In general for a gauge theory it is expected that in the large
Nc limit any gauge invariant correlator factorizes, i.e. < AB >=< A >< B > +O(1/Nc).
So when the two dimensional theory restricted to the color invariant subspace in the large
Nc limit any color invariant correlator should be expressible in terms of correlators of color

invariant bilinear operators, M̂ , N̂ and Q̂, ˆ̄Q given in (10) and (11). We compute the
(anti)commutation relations between these bilinears:
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[M̂(p, q), M̂(r, s)] =
2

Nc

[M̂(p, s)δ[q − r] − M̂(r, q)δ[p− s]

− δ[p− s]δ[q − r](sgn(p) − sgn(q))]
[

N̂(p, q), N̂(r, s)
]

=
2

Nc

[N̂(p, s)sgn(q)δ[q − r] − N̂(r, q)sgn(p)δ[p− s]

+ δ[q − r]δ[p− s](sgn(p) − sgn(q))]
[

Q̂(p, q), ˆ̄Q(r, s)
]

+
=

2

Nc
[M̂(p, s)sgn(q)δ[q − r] + N̂(r, q)δ[p− s]

+ δ[p− s]δ[q − r](1 − sgn(p)sgn(q))]
[

M̂(p, q), Q̂(r, s)
]

=
2

Nc
δ[q − r]Q̂(p, s)

[

N̂(p, q), Q̂(r, s)
]

= − 2

Nc
δ[p− s]sgn(p)Q̂(r, q)

[

M̂(p, q), ˆ̄Q(r, s)
]

= − 2

Nc

δ[p− s] ˆ̄Q(r, q)

[

N̂(p, q), ˆ̄Q(r, s)
]

=
2

Nc

δ[q − r]sgn(q) ˆ̄Q(p, s) (21)

All the other (anti)commutators vanish. The first two relations were used before in [7]
and [18] respectively. These (anti)commutation relations define an infinite dimensional Lie
superalgebra. Its even part is isomorphic to a direct sum of central extensions of infinite-
dimensional unitary and pseudo unitary groups each one generated by operators M̂(p, q)

and N̂(p, q) respectively (see [18] for details). We will talk more about this Lie superalgebra
and the corresponding supergroup in the next section. As the right hand sides of (21) all
contain a factor of 1/Nc in the large Nc limit all of the bilinears commute (or anticommute
respectively) and can be thought of as coordinates on a classical phase space. We denote the

classical variables corresponding to M̂ , N̂ , Q̂, ˆ̄Q by the same letters with hats removed. This
classical phase space is an infinite dimensional supermanifold endowed with a super Poisson
structure inherited from the (anti)commutation relations (21). The corresponding Poisson
superbrackets are obtained from the (anti)commutators in (21) by substituting −i instead
of 1/Nc factors (note that this brings an extra factor of 2). There is no simple way to decide
which multiple of 1/Nc should be the quantum parameter. If one attempts a geometric
quantization of this model, the symplectic form should be an integer multiple of the Chern
character of the line bundle, the sympectic form we have in the next section is in fact the
basic two form. The other possibility is to write the symplectic form in the action and use
single valuedness of the path integral as is done in [7]. (We note in passing that there is a
factor of 2 missing in the reference [18], due to an error in the conventions, but we scale the
Hamiltonian with the same parameter so the large-Nc results are the same. The geometric
quantization parameter instead should have been 1/Nc).

However the super-Poisson structure corresponding to (21) only gives a local structure of
the classical phase space of the theory. In addition to that there are some global constraints
on the classical variables assigned to the color invariant bilinears. The constraints emerge in
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the large Nc limit as consequences of the color invariance condition Q̂α
β = 0.

To write down these constraints it is convenient to introduce the following operator prod-
uct convention

(AB)(p, q) =
∫

[dr]A(p, r)B(r, q)

where A, B stand for any of the above (classical) bilinears. We also introduce operators 1
and ǫ as the operators with the kernels δ[p − q] and −sgn(p)δ[p − q], respectively. In this
notation the constraints read as follows

(M + ǫ)2 +QǫQ† = 1

ǫQ†M + ǫQ†ǫ+ ǫNǫQ† +Q† = 0

MQ+ ǫQ+QǫN +Qǫ = 0

(ǫN + ǫ)2 + ǫQ†Q = 1 . (22)

For brevity we will present here a derivation only of the first constraint in (22). The
derivations of all the others are very similar. We will restrict ourselves to the zero subspace
of the operator Q̂α

β and we define the number operators

F̂ ≡ 1

Nc

∫

[dp] : χ†α(p)χα(p) : , B̂ ≡ 1

Nc

∫

[dp]sgn(p) : a†α(p)aα(p) : . (23)

(Note that these operators are scaled by a factor of 1
Nc

so taking the limit Nc → ∞ gives us
zero when these operators are acting on mesonic states. They are nonzero when we look at
the baryonic states as we will see shortly.)

By writing out the product of operators at hand in terms of the variables a, a†, χ and χ†

and moving the suitable combinations to the right one can prove the identity (that holds on
the whole Fock space)

((M̂ + ǫ)2 + Q̂ǫQ̂†)(r, s) = δ[r − s] +
2

N2
c

χ†α(r)χβ(s)(Q̂β
α + δβ

α(F̂ + B̂))

On the subspace Q̂β
α = 0, the operator B̂ + F̂ will be equal to the baryon number operator

B̂. Thus when we restrict ourselves to a fixed baryon number B, we get,

((M̂ + ǫ)2 + Q̂ǫQ̂†)(r, s) = δ[r − s] + (M̂ + 1 − ǫ)(r, s)
B

Nc
,

this in the large Nc limit produces the first constraint in (22).
When we look at a possible exotic baryon state:
∫

ǫα1...αsαs+1...αNc
Z(p1, ..., ps; ps+1, ..., pNc

)χ†α1(p1)...χ
†αs(ps)a

†αs+1(ps+1)...a
†αNc (pNc

)|0 >,
(24)

where p1, p2, ...pNc
are all positive, and Z(p1, ..., ps, ps+1, ...pNc

) is symmetric in p1, ..., ps and

antisymmetric in ps+1, ..., pNc
. The operator B̂ gives 1 acting on such a state. On mesonic

states this operator has vanishing matrix elements in the large-Nc limit. One can prove
more generally therefore that this operator is the baryon number operator. If we act by this
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operator on a product of such exotic baryons and finite number of mesons in the large-Nc

limit we get the number of baryons, B. In this discussion we see the possibility of having
exotic baryons, and we will come back to the geometric meaning of this in the next section
(and show that it is indeed an integer in our model). We will also show that just as in the
purely bosonic and purely fermionic cases the constraints (22) have an elegant geometric
interpretation in terms of infinite dimensional disc and Grassmannian.

3 Phase Space of the Theory: Super-Grassmannian

In this section we present the geometry of the phase space without going into the mathe-
matical intricacies. We believe the most proper treatment requires an infinite dimensional
extension of Berezin’s Z-graded version of super-geometry. We do not give such a complete
presentation, and develop a more formal approach (in many cases we provide paranthetical
remarks on the general case). We plan to provide a more detailed discussion in a later pub-
lication when we discuss geometric quantization of this system. The proper treatment of
second quantization with bosons and fermions, which fits to our point of view, can be found
in [25, 26], and also in [27]. In order to understand the geometry of the phase space, we
define an operator in super-matrix form;

Φ =
(

ǫN + ǫ ǫQ†

Q M + ǫ

)

, (25)

where Φ : He|Ho → He|Ho. We think of the direct sum He ⊕ Ho of one-particle Hilbert
spaces of bosons and fermions respectively as even and odd graded and the notation He|Ho

is used to emphasize this grading. We use ǫ =
(−1 0

0 1

)

in both of these spaces. This

matrix realization corresponds to the decomposition of the Hilbert spaces into positive and
negative energy subspaces as He

+ ⊕He
− for bosons and Ho

+ ⊕Ho
− for fermions.

The constraints and the conditions that we found in the previous section on the basic
variables of our theory in terms of Φ become

Φ2 = 1 EΦ†E = Φ, (26)

where E =
(

ǫ 0
0 1

)

.

If we introduce a super-group of operators acting on He|Ho, obeying the relations

gEg† = E, g†Eg = E, (27)

we see that the action of this group on the variable Φ, (g,Φ) 7→ gΦg−1 preserves the above

stated conditions on Φ. The orbit of ǫ̂ =
(

ǫ 0
0 ǫ

)

under the action of this super-unitary

group, can be parametrized by Φ.
The condition that the bilinears, originally defined on the Fock space of the quantum

theory, create finite norm vectors implies that the off-diagonal components of M and N are
Hilbert-Schmidt operators(see [7, 6, 18] and for the ideals in the non-super case see [28, 29]).
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A similar computation shows that the off-diagonal components of the super-operators Q
and Q† also satisfy these conditions. These finite norm conditions in two dimensions can be
written in an economical way as the Hilbert-Schmidt condition on the super-matrix Φ. To
state these convergence conditions more properly we should decompose He|Ho into negative
and positive energy subspaces and think of Φ as an operator acting from He

+|Ho
+ ⊕He

−|Ho
−

to the same space. Thus we have the convergence conditions,

[ǫ̂,Φ] ∈ I2 ǫ̂ =
(−1 0

0 1

)

, (28)

where we write ǫ̂’s matrix realization with respect to this positive-negative energy decompo-
sition. Here for the upper off-diagonal component the ideal of Hilbert-Schmidt operators I2

refers to the set of operators B : He
−|Ho

− → He
+|Ho

+, such that TrB†B is convergent. (This
definition in the Z2 graded case is the usual one, since the operators have ordinary numbers
as their matrix entries, in a fully Z graded case these questions are delicate and we have
to give a precise meaning to the Hilbert-Schmidt condition. For this work we ignore this
question but see [30] for further comments on it). The lower off-diagonal block will be a
Hilbert-Schmidt operator C : He

+|Ho
+ → He

−|Ho
− as well. (Since the even and odd Hilbert

spaces are isomorphic, it is convenient to drop the superscript when there is no confusion).
The above considerations suggest that we should use as our symmetry group the restricted
super-unitary group:

U1(H−,H+|H) =
{

g| gEg† = E, g†Eg = E [ǫ̂, g] ∈ I2

}

, (29)

where I2 denotes the ideal of Hilbert-Schmidt operators as in the above positive-negative
energy decomposition used for Φ’s convergence conditions.

We look at the orbit of ǫ̂ =
(

ǫ 0
0 ǫ

)

, this time we write it with respect to the original

decomposition He|Ho, under the restricted super-unitary group. We notice that this orbit
is in fact a homogeneous super-symplectic manifold:

SGr1 =
U1(H−,H+|H)

U(H−|H−) × U(H+|H+)
. (30)

The stability subgroup has a natural embedding into the full group. This physically means
that we allow mixing of the positive energy states of bosons and fermions as well as the
negative ones.

Notice that a tangent vector Vu at any point on this super-Grassmannian is given by its
effect on Φ, Vu(Φ) = i[u,Φ]s, where we use the super-Lie bracket which is defined by

[

(

a1 β1

γ1 d1

)

,
(

a2 β2

γ2 d2

)

]

s
=

[

(

a1 0
0 d1

)

,
(

a2 0
0 d2

)

]

+
[

(

a1 0
0 d1

)

,
(

0 β2

γ2 0

)

]

+
[

(

0 β1

γ1 0

)

,
(

a2 0
0 d2

)

]

+
[

(

0 β1

γ1 0

)

,
(

0 β2

γ2 0

)

]

+

for a decomposition of u into
(

a β
γ d

)

, with respect to He|Ho. In general the super-Lie

algebra element u will depend on the position Φ.

10



Our homogeneous manifold carries a natural two-form, this turns it into a phase space.
We formally define a two-form;

Ω =
i

4
StrΦdΦ ∧ dΦ. (31)

One can give the symplectic form explicitly via its action on vector fields, and this defines
the above two form:

iVu
iVv

Ω =
i

8
StrΦ[[u,Φ]s, [v,Φ]s]s. (32)

Using exactly the same methods as in [7, 18], we can show that it is closed and non-
degenerate.

In fact the above form is also a homogeneous two-form invariant under the group action,
as can be verified in a simple manner. We note that the super-Poisson brackets which we
introduced in the first section as a result of the large-Nc limit, are precisely the ones given
by this symplectic form. Therefore we may introduce a classical dynamical system defined
on this super-Grassmannian with this symplectic form which gives us the same set of super-
Poisson brackets. This shows that the large-Nc limit of our theory has an independent
geometric formulation: the phase space is an infinite dimensional homogeneous manifold
with a natural symplectic structure on it.

The group action is generated by moment maps Fu = − i
2
Strǫu(Φ −

(

ǫ 0
0 ǫ

)

), where we

use the even-odd decomposition to write all the operators and conditional trace to be defined
below. They satisfy the following super-Poisson realization of the super-unitary group:

{Fu, Fv} = F−i[u,v]s −
i

2
Strǫ

[

(

ǫ 0
0 ǫ

)

, u
]

s
v, (33)

where [., .]s again denotes the super-commutator(super-Lie bracket). To see this, one way
is to compute both sides, the other is to use general principles and evaluate both sides at

ǫ̂ =
(

ǫ 0
0 ǫ

)

(written with respect to the even-odd decomposition). The moment function

on the right vanishes there and the central term is constant on the phase space, this gives
us,

Σs(u, v) = − i

8
Str

(

ǫ 0
0 ǫ

)

[[

(

ǫ 0
0 ǫ

)

, u
]

,
[

(

ǫ 0
0 ǫ

)

, v
]]

s

= − i

2

(

Trǫ[ǫ, a(u)]a(v) − Trǫ([ǫ, β(u)]γ(v) + [ǫ, β(v)]γ(u)) − Trǫ[ǫ, d(u)]d(v)
)

= − i

2
Strǫ[

(

ǫ 0
0 ǫ

)

, u]v.

The conditional super-trace is defined by Strǫ

(

A B
C D

)

= TrǫA − TrǫD, and TrǫA =

1
2
Tr(A+ ǫAǫ). Notice that the convergence conditions on Φ guarantees that the conditional

trace exists (in fact a better convergence is possible, see below). This can be seen most
easily by using, Φ − ǫ̂ = gǫ̂g−1 − ǫ̂ = −[ǫ̂, g]g−1. It is more natural to compute this with
respect to the positive-negative energy decomposition, (we use the subscripts ± to denote

11



the super-matrix elements acting between various subspaces),

[ǫ̂, g]g−1 =
(

0 g+−
g−+ 0

) (

(g−1)++ (g−1)+−
(g−1)−+ (g−1)−−

)

=
(I1 I2

I2 I1

)

, (34)

where I1 denotes the ideal of trace class operators and I2 is the ideal of Hilbert-Schmidt
operators. We used the fact that the off diagonal elements are Hilbert-Schmidt and the
others are bounded, and the analog of the well-known conditions I2I2 ∈ I1 in the super-
case. If we multiply this with an element of the Lie algebra we see that the conditional traces
exist. It suggests a slightly better way to write the moment maps, Fu = − i

2
Strǫ̂u(Φ − ǫ̂),

which shows that the conditional convergence could be actually defined with respect to the
positive-negative energy decomposition.

The above discussion further implies that Strǫ̂(Φ− ǫ̂) is convergent. This expression is in
fact conserved by the equations of motion of a quadratic Hamiltonian. We may understand
the meaning of this number, if we think of its action on color invariant states before we take
the large-Nc limit. We can prove that in this case this operator gives us twice the baryon
number. Recall that the baryons in this theory can be exotic, that is we may have color
singlet combinations of the form,

∫

ǫα1α2...αNc
Z(q1, ...qs; qs+1, ..., qNc

)χ†α1(q1)...χ
†αk(qk)a

†αk+1(qk+1)...a
†αNc(qNc

)|0 >, (35)

where all the momenta are positive, and Z is symmetric in p1, ..., ps and antisymmetric in
ps+1, ..., pNc

, as we have seen in the previous section. The negative momenta case,
∫

ǫα1α2...αNc Z̄(q1, ...qk; qk+1, ..., qNc
)χα1

(q1)...χαk
(qk)aαk+1

(qk+1)...aαNc
(qNc

)|0 >, (36)

where all the momenta negative, and similar symmetry properties for Z̄ corresponds to an
anti-baryon and B̂ acting on such a state gives −1. So we identify the large-Nc limit of the
baryon number operator as,

B = −1

2
Strǫ̂(Φ − ǫ̂). (37)

We show in the appendix A that the baryon number operator is indeed an integer using
the geometry of our phase space. We will leave the discussion of the geometry of the phase
space at this point and return to the dynamics.

4 The Linear Approximation

In this section we discuss the linear approximation to the above theory. At present we do not
have a simple physical interpretation of the full equations of motion. In principle they are
straightforward to compute using the Hamiltonians we have and the defining Poisson brack-
ets. Our phase phase is defined by the Poisson brackets we get from the super-commutators
for this system in the large-Nc limit and the constraints which define the global nature of
the phase space. We note that part of the interactions of this theory are in these constraints.
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We give the super Poisson brackets, that defines the kinematics of our theory:

{M(p, q),M(r, s)} = −2i[M(p, s)δ[q − r] −M(r, q)δ[p− s]

− δ[p− s]δ[q − r](sgn(p) − sgn(q))]

{N(p, q), N(r, s)} = −2i[N(p, s)sgn(q)δ[q − r] −N(r, q)sgn(p)δ[p− s]

+ δ[q − r]δ[p− s](sgn(p) − sgn(q))]

{Q(p, q), Q̄(r, s)}+ = −2i[M(p, s)sgn(q)δ[q − r] +N(r, q)δ[p− s]

+ δ[p− s]δ[q − r](1 − sgn(p)sgn(q))]
{M(p, q), Q(r, s)} = −2iδ[q − r]Q(p, s)

{N(p, q), Q(r, s)} = 2iδ[p− s]sgn(p)Q(r, q)
{M(p, q), Q̄(r, s)} = 2iδ[p− s]Q̄(r, q)

{N(p, q), Q̄(r, s)} = −2iδ[q − r]sgn(q)Q̄(p, s). (38)

We have the constraints for the basic variables given in equation (21).
If we are given a Hamiltonian we can compute the equations of motion using the above

super-Poisson brackets. This is a complete description of a classical system. Of course since
the theory is infinite dimensional there are various delicate questions, such as, is it possible
to define trajectories for a any given initial data, what is the dense domain on which the
Hamiltonian is defined, etc. We will not attempt to answer these quaestions here. In the limit
Nc → ∞, we can rewrite the Hamiltonians of interest in terms of these classical variables,
the answers are given in Section 2.

H = H0 +HI , (39)

here H0 =
∫

[dp]hF (p)M(p, p) +
∫

[dp]hB(p)N(p, p), and we take hF (p) =
M2

F

4
1
p

and hB(p) =
M2

B

4
1
|p| with the interpretation that these mass terms are given by the previous expressions.

HI , the interaction part, is given generally by

HI =
∫

[dpdqdsdt] G1(p, q; s, t)M(p, q)M(s, t) +
∫

[dpdqdsdt] G2(p, q; s, t)N(p, q)N(s, t)

+
∫

[dpdqdsdt] G3(p, q; s, t)Q(p, q)Q̄(s, t).

In the next section, it will be useful to keep this general form of the Hamiltonian, but their
explicit forms are given in the discussion of the models in Section 2 in (16),(17), (19), we
will use them directly (in the calculations we keep µ2 always, for the first model we must set
µ2 = 0).

It is straightforward to find the resulting non-linear equations of motion simply by com-
puting

∂O(x−)

∂x−
= {O(x−), H}s, (40)

for any observable O of the theory (we allow for an odd Hamiltonian in the above form, but in
our cases, the Hamiltonians are even). However, it is simpler to first look at the linearization
where everything decouples (equations for M and N were analyzed in this approximation in

13



previous publications [7, 18, 6]). We will see that we get the same equations for M,N as in
[7, 18] in our linearized theory.

Let us ignore all the quadratic terms in the equations of motion and all the quadratic terms
in the constraints. First let us write down the resulting constraints in this approximation:

ǫM +Mǫ = 0
ǫNǫ+N = 0
ǫQ†ǫ+Q† = 0
ǫQ+Qǫ = 0.

We note that the last two equations are identical and the constraints on these variables
decouple hence they can be solved independently. The solutions are,

M(u, v) = 0, N(u, v) = 0, Q(u, v) = 0 for uv > 0. (41)

The other components, that is the ones which have opposite sign momenta, are not restricted.
The equations of motion one gets for the variable M in the linear approximation is (for
u > 0, v < 0):

∂M(u, v; x−)

∂x−
= i

M2
F

2

(1

u
− 1

v

)

M(u, v) − ig2

2π

∫ u−v
2

−u−v
2

dp
M(p− u−v

2
, p+ u−v

2
)

(p− u+v
2

)2
, (42)

which is identical with the one in [7, 6]. If we make the ansatz (see [7]) M(u, v) =
ξM(x)eiP

−
x−

, where x = u
u−v

, and define the invariant mass Λ2
M = 2P−(u − v),(recall that

(u− v) = P+), we get,

Λ2
MξM(x) = M2

F

(1

x
+

1

1 − x

)

ξM(x) − g2

π

∫ 1

0

dy

(y − x)2
ξM(y). (43)

This is the well-known ‘t Hooft equation [10]. Similarly for N(u, v) using the same type of

ansatz, N(u, v) = ξN(x)eiP
−

x−

, and the invariant mass Λ2
N = 2P−(u− v), we get,

Λ2
NξN(x) = M2

B

(1

x
+

1

1 − x

)

ξN(x) − g2

4π

∫ 1

0

dy

(y − x)2

(x+ y)(2 − x− y)
√

x(1 − x)y(1 − y)
ξN(y)

+
λ2

8π

∫ 1

0

dy
√

x(1 − x)y(1 − y)
ξN(y). (44)

This is the bosonic analog of the ‘t Hooft equation [15, 16, 17, 19]. The equations for Q, Q̄
are given in the next section in a slightly more general context, so we will not repeat it here.
If we again use an ansatz for the Q(u, v) given by Q(u, v; x−) = cQ(x)eiP

−
x−

and the same
interpretation of the symbols, and an invariant mass, Λ2

Q = 2P−(u− v), we get

Λ2
QcQ(x) =

(M2
F

x
+

M2
B

1 − x

)

cQ(x) − g2

2π

∫ 1

0

dy

(y − x)2

2 − x− y
√

(1 − x)(1 − y)
cQ(y)

+
µ2

4π

∫ 1

0

dy
√

(1 − y)(1− x)
cQ(y). (45)
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Setting µ2 = 0 we recover the equations found by Aoki[20, 21]. Similarly for the complex
conjugate variable Q̄, we get,

Λ2
Q̄cQ̄(x) =

(M2
B

x
+

M2
F

1 − x

)

cQ̄(x) − g2

2π

∫ 1

0

dy

(y − x)2

x+ y√
xy

cQ̄(y)

+
µ2

4π

∫ 1

0

dy√
yx
cQ̄(y). (46)

We remark that the equation for cQ̄ can be obtained from the equation for cQ if we make
the change of variable x 7→ 1 − x, and interchange MB and MF and use the principal value
prescription (this ultimately comes from the charge conjugation invariance).

The properties of these equation have been discussed in the literature. The two kernels
above differ from the ones given in [10, 15, 20, 21] by a relatively compact perturbation so
they behave in the same way. What is remarkable about them is that they only allow for
discrete spectrum, they do not have scattering states. The corresponding eigenvectors form
a basis.

We make a short digression and note an interesting limit: in the second model let us set
g2 = 0. There is no coupling to gauge fields thus there is no reason to assume that the
observables of the theory are color invariant. We can study this case along the same lines
assuming it is a sort of mean-field approximation only and we search for bound states of a
fermion and a boson in the linear approximation. The Hamiltonian is quite simple,

H =
1

4
m2

B

∫

[dp]

|p| N(p, p) +
µ2

16

∫

[dpdqdsdt]
√

|qs|
δ[p− q + s− t]

t− s
Q(p, q)Q̄(s, t). (47)

The linearization is the same as before, for the bound state solution we obtain equation (44)
with g2 = 0. Unfortunately this equation will not have a solution for the bound state energy.
We need the opposite sign in the Hamiltonian for the coupling of QQ̄. It is an amusing
exercise to check that the seemingly different interaction iµ(φ∗αψ∗

RψLα −ψ∗α
L ψRφα) produces

the same Hamiltonian, so we will still not find a bound state for fermion-boson pair. We
hope to come back to some of these issues in a separate work.

5 Beyond the linear approximation

In this section we will discuss the equations of motion of our theory in a semi-linear approx-
imation. The exact equations of motion can of course be written, but it is hard to grasp
their meaning at this point for the most general case. It will be interesting to look at other
approximations to see what new information they contain.

Our first semi-linear approach is this: We will keep everything linear in the variables M
and N and terms second order in Q and Q† only. We will drop terms of the form MQ, NQ
and M2, N2. Even though we have not found a justification for why this should be a good
approximation, we expect that it may give us a better feeling for the system. We first show
that this is a consistent approximation, that is, if the equations of motion are also kept to
the same approximation, the truncated constraints are preserved.
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The constraints in this new approximation become

Mǫ + ǫM +QǫQ† = 0
Qǫ+ ǫQ = 0
ǫNǫ +N + ǫQ†Q = 0.

We should also obtain semi-linearized equations of motion for these variables. We now
show that the linearized constraints are left invariant by the semi-linearized equations of
motion. We will present the proof for a general quadratic Hamiltonian. The solution of the
constraint on Q is simple: Q(u, v) = 0 when u and v have the same sign. We notice that
the first constraint does not impose anything on M(u, v) for u > 0, v < 0 or u < 0, v > 0,
and the constraint is consistent since for this case we have

∫

Q(u, q)[−sgn(q)]Q̄(q, v)[dq] = 0.
Thus we should look at u > 0, v > 0 or both negative case for M in the constraint:

−2M(u, v)+
∫

Q(u, q)[−sgn(q)]Q̄(q, v)[dq] = −2M(u, v)+
∫ 0

−∞
[dq]Q(u, q)Q̄(q, v) = 0. (48)

Let us check that it is preserved by the linearized equations of motion.

∂M(u, v)

∂x−
= {M(u, v), H}

= 2i(hF (u) − hF (v))M(u, v) +
∫

[dpdrdsdt]G1(p, r, s, t){M(u, v),M(p, r)M(s, t)}

+
∫

[dpdrdrdt]G3(p, r, s, t){M(u, v), Q(p, r)Q̄(s, t)})
= 2i(hF (u) − hF (v))M(u, v)

+ 4i
∫

[dpdr]G1(p, r; v, u)M(p, r)[sgn(u) − sgn(v)]

− 2i
∫

[drdsdt] G3(v, r, s, t)Q(u, r)Q̄(s, t) + 2i
∫

[dpdrds] G3(p, r, s, u)Q(p, r)Q̄(s, v).

The equations of motion for Q in this approximation becomes,

∂Q(u, q)

∂x−
= 2ihF (u)Q(u, q)−2isgn(q)hB(q)Q(u, q)+2i

∫

G3(p, r, q, u)Q(p, r)[1−sgn(u)sgn(q)].

(49)
Similarly for Q†,

∂Q̄(q, v)

∂x−
= −2ihF (v)Q̄(q, v)+2isgn(q)hB(q)Q̄(q, v)−2i

∫

G3(v, q; s, t)Q̄(s, t)[1−sgn(v)sgn(q)].

(50)
Combining these equations and using the constraint again we obtain,

2
∂M(u, v)

∂x−
−

∫ 0

−∞
[
∂Q(u, q)

∂x−
Q̄(q, v) +Q(u, q)

∂Q̄(q, v)

∂x−
][dq] = 0. (51)

Using the same equations, we can check that the condition Q(u, v) = 0 when u, v have the
same sign, is also preserved by the equations of motion, hence also for Q̄(u, v).

We write down the equation of motion for N(u, v);

∂N(u, v)

∂x−
= 2i[hB(u)sgn(u) − hB(v)sgn(v)]N(u, v)
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− 4i
∫

[dpdq] G2(p, q; v, u)[sgn(u) − sgn(v)]N(p, q)

+ 2i
∫

[dpdqdt][G3(p, u; q, t)Q(p, v)Q̄(q, t)sgn(u) −G3(p, q; v, t)Q(p, q)Q̄(u, t)sgn(v)].

Using the above equations of motion we can check that the truncated constraint on N is
preserved under time evolution:

(1 + sgn(u)sgn(v))
∂N(u, v)

∂x−
− sgn(u)

∫ 0

−∞
[dq][

∂Q̄(u, q)

∂x−
Q(q, v) + Q̄(u, q)

∂Q(q, v)

∂x−
] = 0. (52)

Next we discuss the equations of motion for the unconstraint components. From the above
equations we see that the equations for Q and Q† are independent of M and N , therefore
they can be solved independently. Furthermore, the solution acts as a source term for the
M and N equations. Let us write down the equation of motion for Q in the case of u > 0
and v < 0 for our model:

∂Q(u, v)

∂x−
= 2ihF (u)Q(u, v) + 2ihB(v)Q(u, v) + i

µ2

8(u− v)

∫ u−v
2

−u−v
2

[dq]
Q(q − u−v

2
, q + u−v

2
)

√

|q + u−v
2
||v|

− i
g2

2

∫ u−v
2

−u−v
2

[dp]
p− u

2
+ 3v

2

(p− u+v
2

)2

Q(p+ u−v
2
, p− u−v

2
)

√

|p− u−v
2
||v|

.

A similar equation for Q̄(u, v) holds (which can also be found by complex conjugation of the
Q(v, u)).

Notice that the equations of motion for M(u, v) (for u > 0, v < 0) becomes,

∂M(u, v)

∂x−
= 2i(hF (u) − hF (v))M(u, v) − ig2

∫

[ds]
M(s+ (u− v)/2, s− (u− v)/2)

[s− (u+ v)/2]2

+
ig2

4

∫

[dqds]
q + s

(q − s)2

1
√

|qs|
[Q(q + u− s, q)Q̄(s, v) −Q(u, q)Q̄(s, v + s− q)]

− iµ2

8

∫

[dqds]
√

|qs|

[Q(u, q)Q̄(s, s− v + q)

v − q
− Q(u+ q − s, q)Q̄(s, v)

u− s

]

.

We note that in the above integral over M we should separate the constrained variables
from the unconstrained ones. At the same time we do some shift of integration variables,
and obtain,

∂M(u, v; x−)

∂x−
= i

M2
F

2
[
1

u
− 1

v
]M(u, v)− ig2

∫ u−v
2

−u−v
2

[ds]
M(s + (u− v)/2, s− (u− v)/2)

[s− (u+ v)/2]2

+ f+(u, v; x−) + f−(u, v; x−) + g+(u, v; x−) + g−(u, v; x−)
+ Y+(u, v; x−) + Y−(u, v; x−),

where all the forcing terms are functions of Q, Q̄ and their explicit expressions are given in
the appendix B. Note that once we know the solution for Q and Q†, f ’s, g’s and Y ’s just
become time dependent sources for the M and N equations. Therefore we can think of this
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as a forced linear equation. Let us also write down the resulting equation of motion for
N(u, v), for u > 0, v < 0.

∂N(u, v; x−)

∂x−
= i

M2
B

2
[
1

u
− 1

v
]N(u, v)

− i
∫ u−v

2

−u−v
2

[ds]
N(s + (u− v)/2, s− (u− v)/2)

√

|s− u−v
2
||s+ u−v

2
||uv|

[
g2

4

(s+ 3u
2
− v

2
)(s+ 3v

2
− u

2
)

[s− (u+v)
2

]2
− λ2

8
]

+ f̃+(u, v; x−) + f̃−(u, v; x−) + g̃+(u, v; x−) + g̃−(u, v; x−)
+ Ỹ+(u, v; x−) + Ỹ−(u, v; x−),

where we have again the forcing terms determined by the variablesQ, Q̄ (the explicit formulae
are given in the appendix B).

We can give a rough argument how these equations behave. If we look at the formulae
given in the appendix B, we notice that the singular looking kernels are actually harmless,
since the integration regions are outside of the singular points. This means that once we
have the solutions for the Q, Q̄ variables we can treat them as small perturbations to the
equations. If we could find the Green’s function for these linear operator equations given
the sources we should be able to solve them. Let us assume that we have the linear equation
i ∂M
∂x−

= LM + S(x−), where L is a linear Hermitian operator. If we know the eigenvectors
LMλ = λMλ then we can use a general ansatz as M =

∑

λ aλ(x
−)Mλ(x

−), and get aλ(x
−) =

−i ∫ x−

0 dx− < Mλ(x
−), S(x−) >. (In our case the leading singular integral operators are

hermitian and have only discrete spectrum, hence the expansion makes sense). This is
the full solution and represents transition probabilities among the stationary states of the
operator L. Perhaps it is better to think of the ordinary forced harmonic oscillator problem.
When we have a time dependent forcing, this causes transitions between the stationary levels
of the oscillator. So, without actually solving the above equation we see that the forcing
terms will cause transition between the stationary levels. That physically means that the
energy levels of the mesons will have a broadening due to possible transitions.

There is another possible approximation, for which we drop all MM , NN , and QQ̄ terms
and allow for the cross terms MQ, NQ etc, and neglect any higher orders. In some sense
this is the complementary approximation to the previous one. This implies that we should
write the constraint as;

Mǫ+ ǫM = 0
MQ+QǫN + ǫQ+Qǫ = 0
ǫNǫ+N = 0

The first and the last one are familiar conditions. The middle one has the following solution
(in the given approximation): For u, v > 0 (recall that ǫ(p) = −sgn(p)),

− 2Q(u, v) +
∫ 0

−∞
[dq]M(u, q)Q(q, v) +

∫ 0

−∞
[dq]Q(u, q)(−sgn(q))N(q, v) = 0. (53)

For u > 0, v < 0 we have,
∫ 0

−∞
[dq]M(u, q)Q(q, v) −

∫ ∞

0
[dq]Q(u, q)N(q, v) = 0. (54)
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We satisfy the lower equation by noting that the same momenta case for Q is given by the
first constraint and the integrands then become of lower order in this case. The consistency
of these approximations could be checked. In fact if we write down the time derivative of
the above constraint,

− 2
∂Q(u, v)

∂x−
+

∫ 0

−∞
[dq](

∂M(u, q)

∂x−
Q(q, v) +M(u, q)

∂Q(q, v)

∂x−
)

+
∫ 0

−∞
[dq](

∂Q(u, q)

∂x−
N(q, v) +Q(u, q)

∂N(q, v)

∂x−
) = 0

To see this we use,

∂Q(u, v; x−)

∂x−
= 4i

∫

[dpdsdt]G1(p, u; s, t)Q(p, v)M(s, t)

+ 4i
∫

[dqdsdt]G2(v, q; s, t)Q(u, q)N(s, t)sgn(v)

+ 2i(hF (u) − sgn(v)hB(v))Q(u, v) + 2i
∫

[dpdqdt]G3(p, q; v, t)Q(p, q)M(u, t)sgn(v)

+ 2i
∫

[dpdqds]G3(p, q; s, u)Q(p, q)N(s, v)

+ 2i
∫

[dpdq]G3(p, q; v, u)Q(p, q)[1− sgn(u)sgn(v)].

For the first time derivative in the constraint we insert this expression, for the time derivatives
of Q inside the integral we only retain the linear terms in Q, since other combinations are of
lower order by assumption. We should also use the equations of motion of M and N for the
opposite momenta case and only within the linear approximation as is given in the previous
semi-linear case, we do not repeat them, higher order terms get multiplied by Q and become
small. Then we see that the constraint is preserved within the given approximation.

This time we have decoupled linear equations for M and N for the opposite momenta
case, since we ignore QQ̄ type terms, and in principle they can be solved independently.
When we look at the equations for Q, we should again be careful. The opposite momenta
case are to be treated as independent dynamical variables: if we use the constraint equation,
we may express the same sign momenta in terms of the solutions of M and N and the
opposite momenta terms of Q. When we look at the opposite sign momenta equation for
Q we may separate the same sign momenta contributions in the integral operators. But
these same momenta terms in the integral equation become of higher order, since all these
terms are multiplied by other variables, and the central part vanishes in this case, hence
they can be dropped. Let us denote the resulting integral equation which only acts on the
opposite momenta terms by K, this is the expression we have found before, and write the
remaining parts as an abstract integral operator F(x−). Notice that it has dependence on
x− via the solutions of M and N . The time dependence of M and N are rather simple for
this case, since we have singular integral equations with discrete spectra. We can in principle
substitute the solutions we picked into this equation. Hence we have an integral equation

∂Q(u, v; x−)

∂x−
= [KQ](u, v; x−) + [F(x−)Q](u, v; x−). (55)

19



It is most natural to think of the last term as a time dependent perturbation. We can write
this perturbation term F(x−):

[F(x−)Q](u, v; x−) = −ig
2

2

[

∫ u

0
[ds]

∫ u−s

0
[dp] +

∫ 0

−∞
[ds]

∫ ∞

u−s
[dp]

]M(s, s+ p− u; x−)

(s− u)2
Q(p, v)

+ i
[

∫ v

−∞
[dq]

∫ v−q

0
[dt] +

∫ 0

v
[dq]

∫ 0

v−q
[dt]

][g2

8

(t+ q)2 + (q − v)2 − 2q2

(v − t)2
− λ2

16

]

× N(t+ q − v, t; x−)
√

|vq(t+ q − v)|
Q(u, q)

− i
[

∫ 0

v
[dt]

∫ t−v

0
[dp] +

∫ v

−∞
[dt]

∫ 0

t−v
[dp]

]( µ2

8(t− v)
+
g2

4

p− t+ 2v

(p− t)2

)

× M(u, t; x−)
√

|(p− t+ v)v|
Q(p, p− t+ v)

+ i
[

∫ u

0
[ds]

∫ u−s

0
[dp] +

∫ ∞

u
[ds]

∫ 0

u−s
[dp]

]( µ2

8(u− s)
+
g2

4

p+ 2s− u

(p− u)2

)

× N(s, v; x−)
√

|(p+ s− u)s|
Q(p, p+ s− u)

The method of solving such equations is known in principle. We can treat the last term
as a truly time dependent perturbation, but this time it involves the unknown itself and thus
cannot be solved in closed form. However, we can solve it perturbatively. The kernels again
do not become singular within the given ranges of the integrals except at the boundaries.
The singularities are not as severe and we expect that the perturbations are small, so that
one can obtain a reasonable answer from this approach. We will not go into further details,
but the basic result is again the possibility of transitions between the different levels of the
boson-fermion mesons due to the interactions.
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7 Appendix A: Baryon number

We define the Fredholm operators in a Z2 graded context as in the ordinary case (there is
an extension to the Z grading which should fit to our model better: The definition of the
Fredholm operator shows that the body is an ordinary Fredholm operator and the rest is
compact. So below use the body for all the formulae, and take the super-trace of Φ − ǫ̂’s
body part): a Fredholm operator is an invertible operator up to compact operators. This
again implies the kernel and the cokernel are actually finite dimensional. Let us write down
the kernel in a decomposition Ve|Vo, and define a super-dimension, which is the dimension
of the even part of the kernel minus the dimension of the odd part. Sdim(Ker(A)) =
dim(PeKer(A)Pe) − dim(PoKer(A)Po), where Pe and Po denote projections onto the even
and odd subspaces respectively. Then the index should be,

SInd(A) = Sdim(Ker(A)) − Sdim(Coker(A)). (56)

We can extend the Calderon theorem to our case (see [31] for a good introduction and the
original result): If we have an operator A which is Fredholm, and assume we have an operator
B such that (I−AB)m and (I−BA)m are trace class for an integer m, then we can compute
the super-Fredholm index as Str(I − BA)m − Str(I − AB)m. Let us now see that in our
problem the supertrace of Φ is indeed this index. It will be more convenient to decompose
our operator with respect to the positive and negative subspaces, thus we write everything
with respect to H+|H+ ⊕H−|H−, we do not repeat odd and even superscripts, since the bar
indicates this separation. In this decomposition our group conditions can be found from,

g†Eg = E gEg† = E E =
(

ǫ 0
0 1

)

, (57)

so E is the same as before in this matrix representation, it is interpreted differently. The
orbit is with respect to this decomposition,

Φ = gǫ̂g−1 ǫ̂ =
(−1 0

0 1

)

. (58)

So if we write g : H+|H+ ⊕H−|H− → H+|H+ ⊕H−|H−, explicitly, we have

g =
(

A B
C D

)

B, C ∈ I2(H∓|H∓,H±|H±). (59)

From the first group condition we get, A†ǫA+ C†C = ǫ and D†D +B†ǫB = 1 and from the
second one we get, AǫA† +BB† = ǫ and DD† + CǫC† = 1. Since B,C are Hilbert-Schmidt
in the more generalized sense, we have A,D super Fredholm. Further we can use the above
theorem to compute the index of A,D, for example

SInd(D) = Str(B†ǫB) − Str(CǫC†). (60)

Let us compute the conditional supertrace of Φ − ǫ̂, (in fact we see that this is the cor-
rect way we should be computing it), first we write it explicitly with respect to the above
decomposition,

gǫ̂g−1 − ǫ̂ =
(−AǫA†ǫ+BB†ǫ+ 1 ∗

∗ −CǫC† +DǫD† − 1

)

. (61)
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If we use the above group properties, we get

Φ − ǫ̂ =
(

2BB†ǫ ∗
∗ −2CǫC†

)

. (62)

The conditional supertrace of this operator gives us, Strǫ(Φ− ǫ̂) = 2(Str(BB†ǫ)−Str(CǫC†)),
which is equal to 2SInd(D) (using Str(BB†ǫ) = Str(B†ǫB)). Thus we prove using only the
geometry of the super-Grassmanian that this is an integer.

8 Appendix B: Forcing terms

Here we present the forcing functions for the inhomogeneous equations of the previous sec-
tion. The ones we got for M in the first semi-linear approximation is given by,

f+(u, v; x−) = −ig
2

2

∫ ∞

u−v
2

[dp]
∫ 0

−∞
[dq]

Q(p− u−v
2
, q)Q̄(q, p+ u−v

2
)

[p− u+v
2

]2

f−(u, v; x−) = −ig
2

2

∫ −u−v
2

−∞
[dp]

∫ ∞

0
[dq]

Q(p− u−v
2
, q)Q̄(q, p+ u−v

2
)

[p− u+v
2

]2

g+(u, v; x−) = i
g2

4

[

∫ u

0
[ds]

∫ u−s
2

−u−s
2

[dq] +
∫ ∞

u
[ds]

∫ s−u
2

− s−u
2

[dq]
]q + 3s

2
− u

2

[q − u+s
2

]2
Q(q + u−s

2
, q − u−s

2
)Q̄(s, v)

√

|q − u−s
2
||s|

g−(u, v; x−) = −ig
2

4

[

∫ 0

v
[ds]

∫ s−v
2

− s−v
2

[dq] +
∫ v

−∞
[ds]

∫ v−s
2

− v−s
2

[dq]
]q + 3s

2
− v

2

[q − v+s
2

]2
Q(u, s)Q̄(q − v−s

2
, q + v−s

2
)

√

|q − v−s
2
||s|

Y−(u, v; x−) = +
iµ2

8

[

∫ u

0
[ds]

∫ u−s
2

−u−s
2

[dq] +
∫ ∞

u
[ds]

∫ s−u
2

− s−u
2

[dq]
]Q(q + u−s

2
, q − u−s

2
)Q̄(s, v)

(u− s)
√

|q − u−s
2
||s|

Y+(u, v; x−) = −iµ
2

8

[

∫ 0

v
[ds]

∫ s−v
2

− s−v
2

[dq] +
∫ v

−∞
[ds]

∫ v−s
2

− v−s
2

[dq]
]Q(u, s)Q̄(q − v−s

2
, q + v−s

2
)

(v − s)
√

|q − v−s
2
||s|

.

The forcing terms for the first semi-linear approximation for the N variable,

f̃−(u, v; x−) = −i
∫ ∞

u−v
2

[dp]
∫ 0

−∞
[dq]

Q̄(p+ u−v
2
, q)Q(q, p− u−v

2
)

√

|p− u−v
2
||p+ u−v

2
||uv|

[g2

8

(p+ 3u
2
− v

2
)(p+ 3v

2
− u

2
)

[p− u+v
2

]2
− λ2

4

]

f̃+(u, v; x−) = i
∫ −u−v

2

−∞
[dp]

∫ ∞

0
[dq]

Q̄(p+ u−v
2
, q)Q(q, p− u−v

2
)

√

|p− u−v
2
||p+ u−v

2
||uv|

[g2

8

(p+ 3u
2
− v

2
)(p+ 3v

2
− u

2
)

[p− u+v
2

]2
− λ2

4

]

g̃+(u, v; x−) = i
g2

4

[

∫ u

0
[dp]

∫
u−p

2

−u−p

2

[ds] +
∫ ∞

u
[dp]

∫
p−u

2

− p−u

2

[ds]
]s− p

2
+ 3u

2

[s− u+p
2

]2
Q(p, v)Q(s+ u−p

2
, s− u−p

2
)

√

|s− p−u
2
||u|

g̃−(u, v; x−) = i
g2

4

[

∫ 0

v
[dp]

∫
p−v

2

− p−v

2

[ds] +
∫ v

−∞
[dp]

∫
v−p

2

− v−p

2

[ds]
]q + 3s

2
− v

2

[q − v+s
2

]2
Q(s− v−p

2
, s+ v−p

2
)Q̄(u, p)

√

|s− p−v
2
||v|
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Ỹ+(u, v; x−) = −iµ
2

8

[

∫ u

0
[dp]

∫
u−p

2

−u−p

2

[ds] +
∫ ∞

u
[dp]

∫
p−u

2

− p−u

2

[ds]
]Q(p, v)Q̄(s+ u−p

2
, s− u−p

2
)

(p− u)
√

|s+ u−p
2
||u|

Ỹ−(u, v; x−) =
iµ2

8

[

∫ 0

v
[dp]

∫
p−v

2

− p−v

2

[ds] +
∫ v

−∞
[dp]

∫
v−p

2

− v−p

2

[ds]
]Q(s− v−p

2
, s+ v−p

2
)Q̄(u, p)

(p− v)
√

|s+ p−v
2
||v|

.
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